Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260508

RESUMO

Galectins are a family of mammalian glycan-binding proteins that have been implicated as regulators of myriad cellular processes including cell migration, apoptosis, and immune modulation. Several members of this family, such as galectin-1, exhibit both cell-surface and intracellular functions. Interestingly, galectin-1 can be found in the endomembrane system, nucleus, or cytosol, as well as on the cell surface. The mechanisms by which galectin-1 traffics between cellular compartments, including its unconventional secretion and internalization processes, are poorly understood. Here, we determined the pathways by which exogenous galectin-1 enters cells and explored its capacity as a delivery vehicle for protein and siRNA therapeutics. We used a galectin-1-toxin conjugate, modelled on antibody-drug conjugates, as a selection tool in a genome-wide CRISPR screen. We discovered that galectin-1 interacts with the endosome-lysosome trafficking receptor sortilin in a glycan-dependent manner, which regulates galectin-1 trafficking to the lysosome. Further, we show that this pathway can be exploited for delivery of a functional siRNA. This study sheds light on the mechanisms by which galectin-1 is internalized by cells and suggests a new strategy for intracellular drug delivery via galectin-1 conjugation.

2.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141764

RESUMO

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Assuntos
Antígenos de Diferenciação Mielomonocítica , Ligantes , Ativação Linfocitária , Linfócitos T , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Polaridade Celular/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Transdução de Sinais , Linfócitos T/imunologia , Humanos
3.
Science ; 382(6668): eadf6249, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856615

RESUMO

Targeted protein degradation can provide advantages over inhibition approaches in the development of therapeutic strategies. Lysosome-targeting chimeras (LYTACs) harness receptors, such as the cation-independent mannose 6-phosphate receptor (CI-M6PR), to direct extracellular proteins to lysosomes. In this work, we used a genome-wide CRISPR knockout approach to identify modulators of LYTAC-mediated membrane protein degradation in human cells. We found that disrupting retromer genes improved target degradation by reducing LYTAC recycling to the plasma membrane. Neddylated cullin-3 facilitated LYTAC-complex lysosomal maturation and was a predictive marker for LYTAC efficacy. A substantial fraction of cell surface CI-M6PR remains occupied by endogenous M6P-modified glycoproteins. Thus, inhibition of M6P biosynthesis increased the internalization of LYTAC-target complexes. Our findings inform design strategies for next-generation LYTACs and elucidate aspects of cell surface receptor occupancy and trafficking.


Assuntos
Lisossomos , Proteínas de Membrana , Quimera de Direcionamento de Proteólise , Proteólise , Receptor IGF Tipo 2 , Humanos , Células HeLa , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Culina/metabolismo , Quimera de Direcionamento de Proteólise/metabolismo
4.
Nat Biotechnol ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537499

RESUMO

Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms. Engineering of a bacterial mucin-selective protease yielded a variant for fusion to a cancer antigen-binding nanobody. The resulting conjugate selectively degraded mucins on cancer cells, promoted cell death in culture models of mucin-driven growth and survival, and reduced tumor growth in mouse models of breast cancer progression. This work establishes a blueprint for the development of biologics that degrade specific protein glycoforms on target cells.

5.
Proc Natl Acad Sci U S A ; 120(11): e2215376120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897988

RESUMO

The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Humanos , Camundongos , Antígenos CD/metabolismo , Ligantes , Macrófagos/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
6.
Oncogene ; 42(12): 926-937, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36725887

RESUMO

Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Regulação para Cima , Glicosilação , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Ativação Transcricional
7.
Curr Protoc ; 3(1): e646, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36695498

RESUMO

Glycans are carbohydrate molecules appended to proteins and lipids on the surface of all living cells. Glycans play key roles in a wide array of biological processes, and structural changes in cell-surface glycosylation patterns have been connected to pathogenesis of several diseases. In particular, cancer cells frequently upregulate expression of glycans that bind to inhibitory receptors (lectins) on immune cells. These glycosylated antigens systematically inhibit immune activity and protect cancer cells from immune surveillance. Understanding how cancer cells generate these glycan ligands can thus lead to identification of novel druggable targets for therapeutic intervention. However, glycan ligand biosynthesis is subject to extremely complex genetic regulation, making it difficult to identify the key genes involved in production of immune-regulatory glycan antigens. In a recent publication, we described a CRISPR/Cas9 screening approach to identify genes that drive synthesis of ligands for glycan-binding immune receptors. Here, we outline a detailed, step-by-step protocol for completing this type of genome-wide screen. Our protocol produces a genome-wide atlas of all genes whose expression is required for cell-surface binding of a recombinant immune lectin. This dataset can be used both to identify novel ligands for immune lectins and annotate regulatory genes that drive changes in cancer-associated glycosylation. Our protocol serves as a general resource for researchers interested in the detailed study of cancer glyco-immunology. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of a genome-wide CRISPR library using lentiviral transduction Support Protocol: Generation of dCas9KRAB-expressing K-562 cells Basic Protocol 2: Staining of genome-wide CRISPR libraries with Siglec-Fc reagents and fluorescence-activated cell sorting Basic Protocol 3: Library amplification and sequencing Basic Protocol 4: Data analysis and hit identification.


Assuntos
Neoplasias , Polissacarídeos , Humanos , Ligantes , Polissacarídeos/genética , Polissacarídeos/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Proteínas de Transporte
8.
Front Mol Biosci ; 9: 934584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782863

RESUMO

All living cells are coated with a diverse collection of carbohydrate molecules called glycans. Glycans are key regulators of cell behavior and important therapeutic targets for human disease. Unlike proteins, glycans are not directly templated by discrete genes. Instead, they are produced through multi-gene pathways that generate a heterogenous array of glycoprotein and glycolipid antigens on the cell surface. This genetic complexity has sometimes made it challenging to understand how glycosylation is regulated and how it becomes altered in disease. Recent years, however, have seen the emergence of powerful new functional genomics technologies that allow high-throughput characterization of genetically complex cellular phenotypes. In this review, we discuss how these techniques are now being applied to achieve a deeper understanding of glyco-genomic regulation. We highlight specifically how methods like ChIP-seq, RNA-seq, CRISPR genomic screening and scRNA-seq are being used to map the genomic basis for various cell-surface glycosylation states in normal and diseased cell types. We also offer a perspective on how emerging functional genomics technologies are likely to create further opportunities for studying cellular glycobiology in the future. Taken together, we hope this review serves as a primer to recent developments at the glycomics-genomics interface.

9.
Curr Opin Struct Biol ; 75: 102395, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653954

RESUMO

The surface of all living cells is decorated with carbohydrate molecules. Hundreds of functional proteins bind to these glycosylated ligands; such binding events subsequently modulate many aspects of protein and cell function. Identifying ligands for glycan-binding proteins (GBPs) is a defining challenge of glycoscience research. Here, we review recent advances that are allowing protein-carbohydrate interactions to be dissected with an unprecedented level of precision. We specifically highlight how cell-based glycan arrays and glyco-genomic profiling are being used to define the structural determinants of glycan-protein interactions in living cells. Going forward, these methods create exciting new opportunities for the study of glycans in physiology and disease.


Assuntos
Carboidratos , Polissacarídeos , Carboidratos/química , Ligantes , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495350

RESUMO

Glyco-immune checkpoint receptors, molecules that inhibit immune cell activity following binding to glycosylated cell-surface antigens, are emerging as attractive targets for cancer immunotherapy. Defining biologically relevant ligands that bind and activate such receptors, however, has historically been a significant challenge. Here, we present a CRISPRi genomic screening strategy that allowed unbiased identification of the key genes required for cell-surface presentation of glycan ligands on leukemia cells that bind the glyco-immune checkpoint receptors Siglec-7 and Siglec-9. This approach revealed a selective interaction between Siglec-7 and the mucin-type glycoprotein CD43. Further work identified a specific N-terminal glycopeptide region of CD43 containing clusters of disialylated O-glycan tetrasaccharides that form specific Siglec-7 binding motifs. Knockout or blockade of CD43 in leukemia cells relieves Siglec-7-mediated inhibition of immune killing activity. This work identifies a potential target for immune checkpoint blockade therapy and represents a generalizable approach to dissection of glycan-receptor interactions in living cells.


Assuntos
Antígenos de Diferenciação Mielomonocítica/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Humano , Lectinas/metabolismo , Polissacarídeos/metabolismo , Motivos de Aminoácidos , Antígenos de Diferenciação Mielomonocítica/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Glicopeptídeos/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/metabolismo , Lectinas/química , Leucossialina/química , Leucossialina/metabolismo , Ligantes , Ligação Proteica
11.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989128

RESUMO

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Assuntos
Acetilgalactosamina/metabolismo , Glicoproteínas/metabolismo , Acetilgalactosamina/química , Regulação Enzimológica da Expressão Gênica , Glicosilação , Humanos , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Especificidade por Substrato , Uridina Difosfato N-Acetilgalactosamina/química
12.
Nature ; 584(7820): 291-297, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32728216

RESUMO

The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein-for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins-the products of 40% of all protein-encoding genes7-are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified-but essential-component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.


Assuntos
Espaço Extracelular/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Animais , Anticorpos/química , Anticorpos/metabolismo , Antígenos CD/metabolismo , Apolipoproteína E4/metabolismo , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Receptores ErbB/metabolismo , Feminino , Glicopeptídeos/síntese química , Glicopeptídeos/metabolismo , Humanos , Ligantes , Proteínas de Membrana/química , Camundongos , Domínios Proteicos , Transporte Proteico , Receptor IGF Tipo 2/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/química , Solubilidade , Especificidade por Substrato
13.
Mol Cell ; 78(5): 824-834.e15, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32325029

RESUMO

Studying posttranslational modifications classically relies on experimental strategies that oversimplify the complex biosynthetic machineries of living cells. Protein glycosylation contributes to essential biological processes, but correlating glycan structure, underlying protein, and disease-relevant biosynthetic regulation is currently elusive. Here, we engineer living cells to tag glycans with editable chemical functionalities while providing information on biosynthesis, physiological context, and glycan fine structure. We introduce a non-natural substrate biosynthetic pathway and use engineered glycosyltransferases to incorporate chemically tagged sugars into the cell surface glycome of the living cell. We apply the strategy to a particularly redundant yet disease-relevant human glycosyltransferase family, the polypeptide N-acetylgalactosaminyl transferases. This approach bestows a gain-of-chemical-functionality modification on cells, where the products of individual glycosyltransferases can be selectively characterized or manipulated to understand glycan contribution to major physiological processes.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Engenharia de Proteínas/métodos , Vias Biossintéticas , Membrana Celular/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Células K562 , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Polissacarídeos/química , Proteínas/metabolismo
14.
Nat Chem Biol ; 14(9): 901, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29610483

RESUMO

In the version of this article initially published, Sanduni Liyanage and Aaron Schimmer were not properly acknowledged as co-authors. Both authors have now been included in the current author list, and their contributions are now specified in the author contributions statement. The error has been corrected in the PDF and HTML versions of this article.

15.
ACS Chem Biol ; 13(4): 900-908, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29509408

RESUMO

Replication and maintenance of mitochondrial DNA (mtDNA) is essential for cellular function, yet few DNA polymerases are known to function in mitochondria. Here, we conclusively demonstrate that DNA polymerase θ (Polθ) localizes to mitochondria and explore whether this protein is overexpressed in patient-derived cells and tumors. Polθ appears to play an important role in facilitating mtDNA replication under conditions of oxidative stress, and this error-prone polymerase was found to introduce mutations into mtDNA. In patient-derived cells bearing a pathogenic mtDNA mutation, Polθ expression levels were increased, indicating that the oxidative conditions in these cells promote higher expression levels for Polθ. Heightened Polθ expression levels were also associated with elevated mtDNA mutation rates in a selected panel of human tumor tissues, suggesting that this protein can influence mutational frequencies in tumors. The results reported indicate that the mitochondrial function of Polθ may have relevance to human disease.


Assuntos
DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/fisiologia , Taxa de Mutação , Animais , Linhagem Celular Tumoral , Replicação do DNA , Humanos , Neoplasias/genética , Estresse Oxidativo
16.
Infect Genet Evol ; 55: 332-342, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28970112

RESUMO

Trypanosoma cruzi is a protozoan parasite and the causative agent of Chagas disease. Like most living organisms, it is susceptible to oxidative stress, and must adapt to distinct environments. Hence, DNA repair is essential for its survival and the persistence of infection. Therefore, we studied whether T. cruzi has a homolog counterpart of the MutY enzyme (TcMYH), important in the DNA Base Excision Repair (BER) mechanism. Analysis of T. cruzi genome database showed that this parasite has a putative MutY DNA glycosylase sequence. We performed heterologous complementation assays using this genomic sequence. TcMYH complemented the Escherichia coli MutY- strain, reducing the mutation rate to a level similar to wild type. In in vitro assays, TcMYH was able to remove an adenine that was opposite to 8-oxoguanine. We have also constructed a T. cruzi lineage that overexpresses MYH. Although in standard conditions this lineage has similar growth to control cells, the overexpressor is more sensitive to hydrogen peroxide and glucose oxidase than the control, probably due to accumulation of AP sites in its DNA. Localization experiments with GFP-fused TcMYH showed this enzyme is present in both nucleus and mitochondrion. QPCR and MtOX results reinforce the presence and function of TcMYH in these two organelles. Our data suggest T. cruzi has a functional MYH DNA glycosylase, which participates in nuclear and mitochondrial DNA Base Excision Repair.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Estresse Oxidativo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Dano ao DNA , DNA Glicosilases/química , Reparo do DNA , DNA Mitocondrial , Ativação Enzimática , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Mutação , Transporte Proteico , Análise de Sequência de DNA
17.
PLoS One ; 12(2): e0171729, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178347

RESUMO

Desferrioxamine (DFO) is a bacterial siderophore with a high affinity for iron, but low cell penetration. As part of our ongoing project focused on DFO-conjugates, we synthesized, purified, characterized and studied new mtDFOs (DFO conjugated to the Mitochondria Penetrating Peptides TAT49-57, 1A, SS02 and SS20) using a succinic linker. These new conjugates retained their strong iron binding ability and antioxidant capacity. They were relatively non toxic to A2780 cells (IC50 40-100 µM) and had good mitochondrial localization (Rr +0.45 -+0.68) as observed when labeled with carboxy-tetramethylrhodamine (TAMRA) In general, mtDFO caused only modest levels of mitochondrial DNA (mtDNA) damage. DFO-SS02 retained the antioxidant ability of the parent peptide, shown by the inhibition of mitochondrial superoxide formation. None of the compounds displayed cell cycle arrest or enhanced apoptosis. Taken together, these results indicate that mtDFO could be promising compounds for amelioration of the disease symptoms of iron overload in mitochondria.


Assuntos
Desferroxamina/farmacologia , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Anexina A5/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Desferroxamina/química , Humanos , Concentração Inibidora 50 , Quelantes de Ferro/química , Estrutura Molecular , Peptídeos/química , Ligação Proteica , Superóxidos/metabolismo
18.
Acc Chem Res ; 49(9): 1893-902, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27529125

RESUMO

Mitochondria are organelles with critical roles in key processes within eukaryotic cells, and their dysfunction is linked with numerous diseases including neurodegenerative disorders and cancer. Pharmacological manipulation of mitochondrial function is therefore important both for basic science research and eventually, clinical medicine. However, in comparison to other organelles, mitochondria are difficult to access due to their hydrophobic and dense double membrane system as well as their negative membrane potential. To tackle the challenge of targeting these important subcellular compartments, significant effort has been put forward to develop mitochondria-targeted systems capable of transporting bioactive cargo into the mitochondrial interior. Systems now exist that utilize small molecule, peptide, liposome, and nanoparticle-based transport. The vectors available vary in size and structure and can facilitate transport of a variety of compounds for mitochondrial delivery. Notably, peptide-based delivery scaffolds offer attractive features such as ease of synthesis, tunability, biocompatibility, and high uptake both in cellulo and in vivo. Owing to their simple and modular synthesis, these peptides are highly adaptable for delivering chemically diverse cargo. Key design features of mitochondria-targeted peptides include cationic charge, which allows them to harness the negative membrane potential of mitochondria, and lipophilicity, which permits favorable interaction with hydrophobic membranes of mitochondria. These peptides have been covalently tethered to target therapeutic agents, including anticancer drugs, to enhance their drug properties, and to provide probes for mitochondrial biology. Interestingly, mitochondria-targeted DNA damaging agents demonstrate high potency and the ability to evade resistance mechanisms and off-target effects. Moreover, a combination of mitochondria-targeted DNA damaging agents was applied to an siRNA screen for the elucidation of poorly understood mitochondrial DNA repair and replication pathways. In this work, a variety of novel proteins were identified that are essential for the maintenance of mitochondrial nucleic acids. Mitochondria-targeted peptides have also been used to increase the therapeutic window of antibacterial drugs with significant mammalian toxicity. Given the evolutionary similarity of mitochondria and bacteria, peptides are effective transporters that can target both of these entities. These antimicrobial peptides are highly effective even in difficult to target intracellular bacteria which reside within host cells. This peptide-based approach to targeting mitochondria has provided a variety of insights into the "druggability" of mitochondria and new biological processes that could be future drug targets. Nevertheless, the mitochondrial-targeting field is quite nascent and many exciting applications of organelle-specific conjugates remain to be explored. In this Account, we highlight the development and optimization of the mitochondria-penetrating peptides that our laboratory has developed, the unique applications of mitochondria-targeted bioactive cargo, and offer a perspective on important directions for the field.


Assuntos
Portadores de Fármacos/metabolismo , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , DNA/química , Dano ao DNA , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Mitocondriais/metabolismo , Peptídeos/química
19.
Cell Chem Biol ; 23(8): 917-27, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27478157

RESUMO

Mitochondria are energy-producing organelles with essential functions in cell biology, and mitochondrial dysfunction is linked to a wide range of human diseases. Efforts to better understand mitochondrial biology have been limited by the lack of tools for manipulating and detecting processes occurring within the organelle. Here, we highlight recent significant advances in mitochondrial chemical biology that have produced new tools and techniques for studying mitochondria. Specifically, we focus on the development of chemical tools to perturb mitochondrial biochemistry, probes allowing precise measurement of mitochondrial function, and new techniques for high-throughput characterization of the mitochondrial proteome. Taken together, these advances in chemical biology will enable exciting new directions in mitochondrial research.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia
20.
Nat Chem Biol ; 12(7): 567-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239789

RESUMO

Efficient and accurate replication and repair of mitochondrial DNA is essential for cellular viability, yet only a minimal complement of mitochondrial proteins with relevant activities have been identified. Here, we describe an approach to screen for new pathways involved in the maintenance of mitochondrial DNA (mtDNA) that leverages the activities of DNA-damaging probes exhibiting specific subcellular localization. By conducting a siRNA screen of known nuclear DNA maintenance factors, and monitoring synergistic effects of gene depletion on the activity of mitochondria-specific DNA-damaging agents, we identify a series of proteins not previously recognized to act within mitochondria. These include proteins that function in pathways of oxidative DNA damage repair and dsDNA break repair, along with a novel mitochondrial DNA polymerase, POLθ, that facilitates efficient DNA replication in an environment prone to oxidative stress. POLθ expression levels affect the mutational rate of mitochondrial DNA, but this protein also appears critical for efficient mtDNA replication.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Mitocondrial/biossíntese , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Mitocondriais/metabolismo , Sondas Moleculares/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Sondas Moleculares/química , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...